Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JIMD Rep ; 64(6): 460-467, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37927484

RESUMO

Fabry disease (FD, OMIM 301500) is a rare X-linked inherited lysosomal storage disorder associated with reduced activities of α-galactosidase A (aGal, EC 3.2.1.22). The current standard of care for FD is based on enzyme replacement therapy (ERT), in which a recombinantly produced version of αGal is intravenously (iv) applied to Fabry patients in biweekly intervals. Though the iv application is clinically efficacious, periodical infusions are inconvenient, time- and resource-consuming and they negatively impact the patients' quality of life. Subcutaneous (sc) injection, in contrast, is an established route of administration for treatment of chronic conditions. It opens the beneficial option of self-administration, thereby improving patients' quality of life and at the same time reducing treatment costs. We have previously shown that Moss-α-Galactosidase (moss-aGal), recombinantly produced in the moss Physcomitrium patens, is efficient in degrading accumulated Gb3 in target organs of murine model of FD and in the phase I clinical study, we obtained first efficacy evidence in human patients following single iv infusion. Here, we tested the efficacy of subcutaneous administration of moss-aGal and compared it with the results observed following iv infusion in Fabry mice. The obtained findings demonstrate that subcutaneously applied moss-aGal is correctly transported to target organs and efficacious in degrading Gb3 deposits there and thus suggest the possibility of using this route of administration for therapy of Fabry disease.

2.
Sci Rep ; 13(1): 4748, 2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-36959353

RESUMO

Fabry disease is caused by a deficiency of α-galactosidase A (GLA) leading to the lysosomal accumulation of globotriaosylceramide (Gb3) and other glycosphingolipids. Fabry patients experience significant damage to the heart, kidney, and blood vessels that can be fatal. Here we apply directed evolution to generate more stable GLA variants as potential next generation treatments for Fabry disease. GLAv05 and GLAv09 were identified after screening more than 12,000 GLA variants through 8 rounds of directed evolution. Both GLAv05 and GLAv09 exhibit increased stability at both lysosomal and blood pH, stability to serum, and elevated enzyme activity in treated Fabry fibroblasts (19-fold) and GLA-/- podocytes (10-fold). GLAv05 and GLAv09 show improved pharmacokinetics in mouse and non-human primates. In a Fabry mouse model, the optimized variants showed prolonged half-lives in serum and relevant tissues, and a decrease of accumulated Gb3 in heart and kidney. To explore the possibility of diminishing the immunogenic potential of rhGLA, amino acid residues in sequences predicted to bind MHC II were targeted in late rounds of GLAv09 directed evolution. An MHC II-associated peptide proteomics assay confirmed a reduction in displayed peptides for GLAv09. Collectively, our findings highlight the promise of using directed evolution to generate enzyme variants for more effective treatment of lysosomal storage diseases.


Assuntos
Doença de Fabry , Humanos , Camundongos , Animais , Doença de Fabry/tratamento farmacológico , Doença de Fabry/genética , alfa-Galactosidase/genética , alfa-Galactosidase/metabolismo , Rim/metabolismo , Modelos Animais de Doenças , Fibroblastos/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-36231830

RESUMO

BACKGROUND: Hallux valgus (HV) is one of the most common forefoot deformities among females, and its prevalence increases with age. This study aims to evaluate the effectiveness of three different types of orthotics on the reduction in hallux valgus angle (HVA) for patients with mild and moderate hallux valgus deformities. METHODS: Twenty-six patients (42 feet) with mild or moderate HV participated in the treatment with three types of orthotics in the current study. Patients were divided into three groups depending on their HV severities and the consideration of different function of the orthotics. Orthotic Type 1 is a biomechanical style orthotic applied to moderated HV in Group 1. Orthotic Type 2 is a wrap style orthotic used on mild and moderate HV with two sub-groups: mild HV in Group 2A and moderate HV in Group 2B. Orthotic Type 3 is a gel style orthotic for mild HV. Patients were required to wear the orthotics for between 6 and 8 h per night over a period of 12 months. The HVA was measured every 3 weeks using a newly designed Measuring Block. A paired t-test was used to compare the differences between initial and final HVA at different stages of HVA treatment with orthotics. RESULTS: After the 12-month treatment, for moderate HV patients treated with the Orthotic Type 1, their HVA reduced by 5.05° (95% CI 1.37, 8.73), (p < 0.05). For moderate HV patients treated with the Orthotic Type 2, their HVA reduced by 1.2° (95% CI -0.71, 3.11) (p > 0.05). For mild HV patients treated with the Orthotic Type 2, their HVA reduced by 2.44° (95% CI 1.39, 3.49) (p < 0.05). For mild HV patients treated with the Orthotic Type 3, their HVA reduced by 3.08° (95% CI -0.68, 6.83) (p > 0.05). CONCLUSIONS: Orthotic Type 1 showed a consistent significance in reduction in the HVA during the 12-month treatment, so it could be recommended for treating moderate HV. Orthotic Type 2 reduced the HVA, but it did not show a consistent significance in reduction in the HVA for mild and moderate HV. Orthotic Type 3 reduced the HVA, but it showed a volatile trend during 12 months without significant differences.


Assuntos
Hallux Valgus , Ossos do Metatarso , Feminino , , Hallux Valgus/terapia , Humanos , Aparelhos Ortopédicos , Radiografia , Estudos Retrospectivos , Resultado do Tratamento
4.
Mol Genet Metab Rep ; 33: 100919, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36186841

RESUMO

Fabry disease is an X-linked lysosomal storage disorder caused by a deficiency of α-galactosidase A and subsequent accumulation of glycosphingolipids with terminal α-D-galactosyl residues. The molecular process through which this abnormal metabolism of glycosphingolipids causes multisystem dysfunction in Fabry disease is not fully understood. We sought to determine whether dysregulated DNA methylation plays a role in the development of this disease. In the present study, using isogenic cellular models derived from Fabry patient endothelial cells, we tested whether manipulation of α-galactosidase A activity and glycosphingolipid metabolism affects DNA methylation. Bisulfite pyrosequencing revealed that changes in α-galactosidase A activity were associated with significantly altered DNA methylation in the androgen receptor promoter, and this effect was highly CpG loci-specific. Methylation array studies showed that α-galactosidase A activity and glycosphingolipid levels were associated with differential methylation of numerous CpG sites throughout the genome. We identified 15 signaling pathways that may be susceptible to methylation alterations in Fabry disease. By incorporating RNA sequencing data, we identified 21 genes that have both differential mRNA expression and methylation. Upregulated expression of collagen type IV alpha 1 and alpha 2 genes correlated with decreased methylation of these two genes. Methionine levels were elevated in Fabry patient cells and Fabry mouse tissues, suggesting that a perturbed methionine cycle contributes to the observed dysregulated methylation patterns. In conclusion, this study provides evidence that α-galactosidase A deficiency and glycosphingolipid storage may affect DNA methylation homeostasis and highlights the importance of epigenetics in the pathogenesis of Fabry disease and, possibly, of other lysosomal storage disorders.

5.
Artigo em Inglês | MEDLINE | ID: mdl-35897475

RESUMO

BACKGROUND: Hallux valgus (HV) is one of the most common forefoot deformities, and its prevalence increases with age. HV has been associated with poor foot function, difficulty in fitting footwear and poor health-related quality of life. The aims of this study were to design and develop an easy-to-use measurement device for measuring hallux valgus angle (HVA) in patients with HV and to assess the measurement reliability of the newly designed measurement device. METHODS: A manual measurement device for measuring HVA was designed and developed to test on patients with HV. Two measuring methods, i.e., test-retest and intra-observer measurements, were used to evaluate the repeatability and reliability of the newly designed measurement device. In the test-retest measurements, a total of 42 feet from 26 patients with HV were repeatedly measured by the same researcher using the manual measurement device every 3 weeks over a period of 12 months. The measurement reliability of the newly designed measurement device was analysed based on the collected HVA data. In the intra-observer measurements, a total of 22 feet from the same group of HV patients were measured by the same researcher using the manual measurement device and by a consultant using X-ray measurement for comparison. The intraclass correlation coefficient (ICC) was used to determine the correlation of measurements between the manual measurement device and X-ray measurement. RESULTS: The mean of the difference between the two repeat measurements of HVA using the newly designed manual device was 0.62°, and the average of ICC was 0.995, which indicates excellent reliability. The ICC between X-ray and the average of twice-repeated manual measurements was 0.868, with 95% CI (0.649, 0.947) (p = 0.000). When the relationship in HVA between X-ray measurement and manual measurement using the new device was regressed as a linear relationship, the regression equation was y = 1.13x - 4.76 (R2 = 0.70). CONCLUSIONS: The newly designed measurement device is easy to use, with low-cost and excellent reliability for HVA measurement, with the potential for use in clinical practice.


Assuntos
Hallux Valgus , , Hallux Valgus/diagnóstico por imagem , Humanos , Qualidade de Vida , Radiografia , Reprodutibilidade dos Testes
6.
Clin Pharmacol Drug Dev ; 10(9): 1075-1088, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33876577

RESUMO

Approved therapies for Fabry disease (FD) include migalastat, an oral pharmacological chaperone, and agalsidase beta and agalsidase alfa, 2 forms of enzyme replacement therapy. Broad tissue distribution may be beneficial for clinical efficacy in FD, which has severe manifestations in multiple organs. Here, migalastat and agalsidase beta biodistribution were assessed in mice and modeled using physiologically based pharmacokinetic (PBPK) analysis, and migalastat biodistribution was subsequently extrapolated to humans. In mice, migalastat concentration was highest in kidneys and the small intestine, 2 FD-relevant organs. Agalsidase beta was predominantly sequestered in the liver and spleen (organs unaffected in FD). PBPK modeling predicted that migalastat 123 mg every other day resulted in concentrations exceeding the in vitro half-maximal effective concentration in kidneys, small intestine, skin, heart, and liver in human subjects. However, extrapolation of mouse agalsidase beta concentrations to humans was unsuccessful. In conclusion, migalastat may distribute to tissues that are inaccessible to intravenous agalsidase beta in mice, and extrapolation of mouse migalastat concentrations to humans showed adequate tissue penetration, particularly in FD-relevant organs.


Assuntos
1-Desoxinojirimicina/análogos & derivados , Isoenzimas/farmacocinética , Modelos Biológicos , alfa-Galactosidase/farmacocinética , 1-Desoxinojirimicina/farmacocinética , Adulto , Animais , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Pessoa de Meia-Idade , Especificidade da Espécie , Distribuição Tecidual , Adulto Jovem , alfa-Galactosidase/genética
7.
J Lipid Res ; 61(11): 1410-1423, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32868283

RESUMO

Fabry disease is caused by deficient activity of α-galactosidase A, an enzyme that hydrolyzes the terminal α-galactosyl moieties from glycolipids and glycoproteins, and subsequent accumulation of glycosphingolipids, mainly globotriaosylceramide (Gb3), globotriaosylsphingosine (lyso-Gb3), and galabiosylceramide. However, there is no known link between these compounds and disease severity. In this study, we compared Gb3 isoforms (various fatty acids) and lyso-Gb3 analogs (various sphingosine modifications) in two strains of Fabry disease mouse models: a pure C57BL/6 (B6) background or a B6/129 mixed background, with the latter exhibiting more prominent cardiac and renal hypertrophy and thermosensation deficits. Total Gb3 and lyso-Gb3 levels in the heart, kidney, and dorsal root ganglion (DRG) were similar in the two strains. However, levels of the C20-fatty acid isoform of Gb3 and particular lyso-Gb3 analogs (+18, +34) were significantly higher in Fabry-B6/129 heart tissue when compared with Fabry-B6. By contrast, there was no difference in Gb3 and lyso-Gb3 isoforms/analogs in the kidneys and DRG between the two strains. Furthermore, using immunohistochemistry, we found that Gb3 massively accumulated in DRG mechanoreceptors, a sensory neuron subpopulation with preserved function in Fabry disease. However, Gb3 accumulation was not observed in nonpeptidergic nociceptors, the disease-relevant subpopulation that has remarkably increased isolectin-B4 (the marker of nonpeptidergic nociceptors) binding and enlarged cell size. These findings suggest that specific species of Gb3 or lyso-Gb3 may play major roles in the pathogenesis of Fabry disease, and that Gb3 and lyso-Gb3 are not responsible for the pathology in all tissues or cell types.


Assuntos
Modelos Animais de Doenças , Doença de Fabry/metabolismo , Glicoesfingolipídeos/metabolismo , Animais , Doença de Fabry/genética , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Fenótipo , Índice de Gravidade de Doença
8.
Appl Biochem Biotechnol ; 191(2): 605-622, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31828592

RESUMO

Chitosan oligosaccharide (COS), a water-soluble carbohydrate obtained from chemical or enzymatic hydrolysis of chitosan, has similar structure and properties to non-toxic, biocompatible, and biodegradable chitosan. However, COS has many advantages over chitosan due to its low molecular weight and high water solubility. In the current work, COS was incorporated in the laccase-catalyzed polymerization of hydroquinone. The laccase-catalyzed polymerization of hydroquinone with or without COS was investigated by using simple structure of glucosamine hydrochloride as an alternative to COS to understand the mechanism of COS-incorporated polymerization of hydroquinone. Although polyhydroquinone can be regarded as the polymeric colorant with dark brown color, there is no affinity or chemical bonding between polyhydroquinone and cotton fibers. Cotton fabrics were successfully in-situ dyed into brown color through the laccase-catalyzed polymerization of hydroquinone by incorporating with COS as a template. The presence of COS enhanced the dye uptake of polyhydroquinone on cotton fibers due to high affinity of COS to cotton and covalent bonding between COS and polyhydroquinone during laccase catalysis. This novel approach not only provides a simple route for the biological coloration of cotton fabrics but also presents a significant way to prepare functional textiles with antibacterial property.


Assuntos
Quitosana/química , Fibra de Algodão , Hidroquinonas/metabolismo , Lacase/metabolismo , Oligossacarídeos/química , Polimerização , Catálise , Corantes/química , Gossypium , Peso Molecular , Solubilidade , Têxteis
9.
Nat Commun ; 10(1): 1785, 2019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-31040271

RESUMO

Lysosomal replacement enzymes are essential therapeutic options for rare congenital lysosomal enzyme deficiencies, but enzymes in clinical use are only partially effective due to short circulatory half-life and inefficient biodistribution. Replacement enzymes are primarily taken up by cell surface glycan receptors, and glycan structures influence uptake, biodistribution, and circulation time. It has not been possible to design and systematically study effects of different glycan features. Here we present a comprehensive gene engineering screen in Chinese hamster ovary cells that enables production of lysosomal enzymes with N-glycans custom designed to affect key glycan features guiding cellular uptake and circulation. We demonstrate distinct circulation time and organ distribution of selected glycoforms of α-galactosidase A in a Fabry disease mouse model, and find that an α2-3 sialylated glycoform designed to eliminate uptake by the mannose 6-phosphate and mannose receptors exhibits improved circulation time and targeting to hard-to-reach organs such as heart. The developed design matrix and engineered CHO cell lines enables systematic studies towards improving enzyme replacement therapeutics.


Assuntos
Lisossomos/enzimologia , Animais , Células CHO , Cricetinae , Cricetulus , Modelos Animais de Doenças , Doença de Fabry/tratamento farmacológico , Doença de Fabry/enzimologia , Doença de Fabry/metabolismo , Glicosilação , Masculino , Camundongos , Camundongos Knockout , Proteínas Recombinantes/uso terapêutico , alfa-Galactosidase/uso terapêutico
10.
Eng Life Sci ; 19(9): 643-654, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32625039

RESUMO

There is an increasing interest in the development of enzymatic coloration of textile fabrics as an alternative to conventional textile dyeing processes, which is successful for dyeing protein fibers. However, unmodified cotton fabrics are difficult to be dyed through enzyme catalysis due to the lack of affinity of biosynthesized dyes to cotton fibers. In order to improve the enzyme-catalyzed dyeability of cotton fibers, chitosan was used to coat cotton fabrics as template. A novel and facile bio-coloration technique using laccase catalysis of hydroquinone was developed to dye chitosan-templated cotton fabrics. The polymerization of hydroquinone with the template of chitosan under the laccase catalysis was monitored by ultraviolet-vis spectrophotometer on the absorbance of reaction solution. A significant peak of UV-vis spectrum at 246 nm corresponding to large conjugated structures appeared and increased with increasing the duration of enzymatic catalysis. The effect of different treatment conditions on the laccase-catalyzed dyeing of cotton fabric was investigated to determine their optimal parameters of laccase-catalyzed coloration. Fourier-transform infrared spectroscopy spectra demonstrated the formation of H-bond and Schiff base reaction between chitosan and polymerized hydroquinone. Scanning electron microscopy indicated that the surface of dyed cotton fiber was much rougher than that of the control sample. Moreover, X-ray photoelectron spectroscopy also revealed the existence of the chitosan/polymerized hydroquinone complex and polymerized hydroquinone on the dyed cotton fibers. This chitosan-templated approach offers possibility for biological dyeing coloration of cotton fabrics and other cellulosic materials.

11.
Carbohydr Polym ; 203: 369-377, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30318225

RESUMO

Chitosan, a natural biopolymer, is used as a multifunctional agent for modification of wool either through chemical crosslinking or physical coating. For the first time, wool fabric has been modified with chitosan through disulfide bond breaking and reforming reactions. The chitosan was thiolated and then grafted onto the reduced wool fibers through disulfide bonds. In order to understand the mechanism of the grafting of thiolated chitosan onto wool, glutathione was used as a model compound for wool in the research. The structures of thiolated chitosan reacted with glutathione and wool fabrics grafted with thiolated chitosan were investigated by FTIR, 13CNMR, XPS, XRD, SEM. The dyeability, shrink-resistance and biocompatibility were also tested. The results suggested that glutathione reacted with thiolated chitosan and formed disulfide bond. The thiolated chitosan-grafted wool fabric had good shrink-resistance and dyeability. Hydrophilicity and antibacterial properties were also improved compared with untreated wool fabric. The results provide a novel approach for modification of wool through fiber-intrinsic groups like disulfide bonds.

12.
Gene Ther ; 25(7): 497-509, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30072816

RESUMO

Here we present our progress in inducing an ectopic brown adipose tissue (BAT) phenotype in skeletal muscle (SKM) as a potential gene therapy for obesity and its comorbidities. We used ultrasound-targeted microbubble destruction (UTMD), a novel targeted, non-viral approach to gene therapy, to deliver genes in the BAT differentiation pathway into rodent SKM to engineer a thermogenic BAT phenotype with ectopic mUCP-1 overexpression. In parallel, we performed a second protocol using wild-type Ucp-1-null knockout mice to test whether the effects of the gene therapy are UCP-1 dependent. Our main findings were a robust cellular presence of mUCP-1 immunostaining (IHC), significantly higher expression levels of mUCP-1 measured by qRT-PCR, and highest temperature elevation measured by infrared thermography in the treated thigh, achieved in rats after delivering the UTMD-PRDM16/PGC-1a/BMP7/hyPB gene cocktail. Interestingly, the weight loss obtained in the treated rats with the triple gene delivery, never recovered the levels observed in the controls in spite of food intake recovery. Our results establish the feasibility of minimally invasive UTMD gene-based therapy administration in SKM, to induce overexpression of ectopic mUCP-1 after delivery of the thermogenic BAT gene program, and describe systemic effects of this intervention on food intake, weight loss, and thermogenesis.


Assuntos
Tecido Adiposo Marrom/metabolismo , Terapia Genética , Obesidade/terapia , Proteína Desacopladora 1/genética , Tecido Adiposo Marrom/transplante , Animais , Ingestão de Alimentos/genética , Regulação da Expressão Gênica , Camundongos , Camundongos Knockout , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Ratos , Termogênese/genética , Proteína Desacopladora 1/administração & dosagem
13.
Biosensors (Basel) ; 8(2)2018 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-29596396

RESUMO

Imaging photoplethysmography (iPPG) is an emerging technology used to assess microcirculation and cardiovascular signs by collecting backscattered light from illuminated tissue using optical imaging sensors. The aim of this study was to study how effective smart garment fabrics could be capturing physiological signs in a non-contact mode. The present work demonstrates a feasible approach of, instead of using conventional high-power illumination sources, integrating a grid of surface-mounted light emitting diodes (LEDs) into cotton fabric to spotlight the region of interest (ROI). The green and the red LEDs (525 and 660 nm) placed on a small cotton substrate were used to locally illuminate palm skin in a dual-wavelength iPPG setup, where the backscattered light is transmitted to a remote image sensor through the garment fabric. The results show that the illuminations from both wavelength LEDs can be used to extract heart rate (HR) reaching an accuracy of 90% compared to a contact PPG probe. Stretching the fabric over the skin surface alters the morphology of iPPG signals, demonstrating a significantly higher pulsatile amplitude in both channels of green and red illuminations. The skin compression by the fabric could be potentially utilised to enhance the penetration of illumination into cutaneous microvascular beds. The outcome could lead a new avenue of non-contact opto-physiological monitoring and assessment with functional garment fabrics.


Assuntos
Vestuário/normas , Processamento de Imagem Assistida por Computador/métodos , Monitorização Fisiológica/métodos , Fenômenos Fisiológicos da Pele/imunologia , Humanos
14.
J Inherit Metab Dis ; 41(2): 231-238, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29110178

RESUMO

Fabry disease is a glycosphingolipidosis caused by deficient activity of α-galactosidase A; it is one of a few diseases that are associated with priapism, an abnormal prolonged erection of the penis. The goal of this study was to investigate the pathogenesis of Fabry disease-associated priapism in a mouse model of the disease. We found that Fabry mice develop late-onset priapism. Neuronal nitric oxide synthase (nNOS), which was predominantly present as the 120-kDa N-terminus-truncated form, was significantly upregulated in the penis of 18-month-old Fabry mice compared to wild type controls (~fivefold). Endothelial NOS (eNOS) was also upregulated (~twofold). NO level in penile tissues of Fabry mice was significantly higher than wild type controls at 18 months. Gene transfer-mediated enzyme replacement therapy reversed abnormal nNOS expression in the Fabry mouse penis. The penile nNOS level was restored by antiandrogen treatment, suggesting that hyperactive androgen receptor signaling in Fabry mice may contribute to nNOS upregulation. However, the phosphodiesterase-5A expression level and the adenosine content in the penis, which are known to play roles in the development of priapism in other etiologies, were unchanged in Fabry mice. In conclusion, these data suggested that increased nNOS (and probably eNOS) content and the consequential elevated NO production and high arterial blood flow in the penis may be the underlying mechanism of priapism in Fabry mice. Furthermore, in combination with previous findings, this study suggested that regulation of NOS expression is susceptible to α-galactosidase A deficiency, and this may represent a general pathogenic mechanism of Fabry vasculopathy.


Assuntos
Doença de Fabry/complicações , Óxido Nítrico Sintase Tipo III/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Ereção Peniana , Pênis/enzimologia , Priapismo/etiologia , Animais , Modelos Animais de Doenças , Terapia de Reposição de Enzimas/métodos , Doença de Fabry/enzimologia , Doença de Fabry/fisiopatologia , Doença de Fabry/terapia , Terapia Genética/métodos , Masculino , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Óxido Nítrico/metabolismo , Pênis/fisiopatologia , Priapismo/enzimologia , Priapismo/fisiopatologia , Priapismo/terapia , Fluxo Sanguíneo Regional , Transdução de Sinais , Regulação para Cima , alfa-Galactosidase/biossíntese , alfa-Galactosidase/genética
15.
Nan Fang Yi Ke Da Xue Xue Bao ; 37(10): 1345-1350, 2017 Oct 20.
Artigo em Chinês | MEDLINE | ID: mdl-29070464

RESUMO

OBJECTIVE: To elucidate the mechanisms of up regulated expression of cytoplasmic phospholipase A2 (CPLA2) induced by one lung ventilation (OLV) by investigating the interactions between nuclear factor kappaB (NF-κB) and C-PLA2. METHODS: Forty-eight healthy Japanese white rabbits were randomized into control group, solvent treatment group (group S), NF-κB inhibitor (PDTC)/solvent treatment group ( group PS), C-PLA2 inhibitor (AACOCF3)/solvent treatment group (group AS), OLV group (group O), solvent treatment plus OLV group (SO group), NFκB inhibitor (PDTC)/solvent treatment plus OLV group (group PSO) and CPLA2 inhibitor (AACOCF3)/solvent treatment plus OLV group (group ASO). ELISA was used to detect arachidonic acid (AA) content in the lung tissues, and NFκB and CPLA2 expressions were detected by Western blotting and quantitative PCR. Lung injuries were assessed based on the lung histological score, and the polymorphonuclear leukocyte count in the bronchial alveolar lavage fluid, myeloperoxidase (MPO) content in the lung tissues, and lung wet/dry weight (W/D) raito were determined. RESULTS: Treatment of the rabbits with the solvent did not produce any adverse effects. OLV caused obvious lung injury in the rabbits and up regulated the expressions of CPLA2 and NFκB in the lung tissues (P<0.05). In rabbits without OLV, treatment with AACOCF3 or PDTC significantly down regulated both CPLA2 and NFκB expressions without affecting the other parameters. In rabbits with OLV, treatment with AACOCF3 or PDTC obviously lowered CPLA2 and NFκB expressions and lessened the OLV-induced lung injuries. CONCLUSION: Both C-PLA2 and NF-κB play important roles and show interactions in OLV-induced lung injury in rabbits.


Assuntos
Lesão Pulmonar/metabolismo , NF-kappa B/isolamento & purificação , Ventilação Monopulmonar/efeitos adversos , Fosfolipases A2/metabolismo , Animais , Citoplasma/metabolismo , Regulação da Expressão Gênica , Pulmão , Coelhos , Distribuição Aleatória
16.
Hum Mol Genet ; 26(6): 1182-1192, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28158561

RESUMO

Fabry disease is caused by deficient activity of α-galactosidase A and subsequent accumulation of glycosphingolipids (mainly globotriaosylceramide, Gb3), leading to multisystem organ dysfunction. Oxidative stress and nitric oxide synthase (NOS) uncoupling are thought to contribute to Fabry cardiovascular diseases. We hypothesized that decreased tetrahydrobiopterin (BH4) plays a role in the pathogenesis of Fabry disease. We found that BH4 was decreased in the heart and kidney but not in the liver and aorta of Fabry mice. BH4 was also decreased in the plasma of female Fabry patients, which was not corrected by enzyme replacement therapy (ERT). Gb3 levels were inversely correlated with BH4 levels in animal tissues and cultured patient cells. To investigate the role of BH4 deficiency in disease phenotypes, 12-month-old Fabry mice were treated with gene transfer-mediated ERT or substrate reduction therapy (SRT) for 6 months. In the Fabry mice receiving SRT but not ERT, BH4 deficiency was restored, concomitant with ameliorated cardiac and renal hypertrophy. Additionally, glutathione levels were decreased in Fabry mouse tissues in a sex-dependent manner. Renal BH4 levels were closely correlated with glutathione levels and inversely correlated with cardiac and kidney weight. In conclusion, this study showed that BH4 deficiency occurs in Fabry disease and may contribute to the pathogenesis of the disease through oxidative stress associated with a reduced antioxidant capacity of cells and NOS uncoupling. This study also suggested dissimilar efficacy of ERT and SRT in correcting pre-existing pathologies in Fabry disease.


Assuntos
Biopterinas/análogos & derivados , Terapia de Reposição de Enzimas , Doença de Fabry/genética , alfa-Galactosidase/genética , Animais , Biopterinas/deficiência , Biopterinas/genética , Biopterinas/metabolismo , Modelos Animais de Doenças , Doença de Fabry/mortalidade , Doença de Fabry/fisiopatologia , Feminino , Glutationa/metabolismo , Glicoesfingolipídeos/metabolismo , Humanos , Rim/metabolismo , Rim/patologia , Camundongos , Miocárdio/metabolismo , Miocárdio/patologia , Óxido Nítrico Sintase/genética , Óxido Nítrico Sintase/metabolismo , Estresse Oxidativo/genética , alfa-Galactosidase/biossíntese , alfa-Galactosidase/metabolismo
17.
Oncotarget ; 7(49): 80391-80403, 2016 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-27823982

RESUMO

Established adriamycin cardiomyopathy is a lethal disease. When congestive heart failure develops, mortality is approximately 50% in a year. It has been known that ANGPTLs has various functions in lipid metabolism, inflammation, cancer cell invasion, hematopoietic stem activity and diabetes. We hypothesized that ANGPTL8 is capable of maintaining heart function by stimulating adult cardiac progenitor cells to initiate myocardial regeneration. We employed UTMD to deliver piggybac transposon plasmids with the human ANGPTL8 gene to the liver of rats with adriamycin cardiomyopathy. After ANGPTL8 gene liver delivery, overexpression of transgenic human ANGPTL8 was found in rat liver cells and blood. UTMD- ANGPTL8 gene therapy restored LV mass, fractional shortening index, and LV posterior wall diameter to nearly normal. Our results also showed that ANGPTL8 reversed established ADM cardiomyopathy. This was associated with activation of ISL-1 positive cardiac progenitor cells in the epicardium. A time-course experiment shown that ISL-1 cardiac progenitor cells proliferated and formed a niche in the epicardial layer and then migrated into sub-epicardium. The observed myocardial regeneration accompanying reversal of adriamycin cardiomyopathy was associated with upregulation of PirB expression on the cell membrane of cardiac muscle cells or progenitor cells stimulated by ANGPTL8.


Assuntos
Proteínas Semelhantes a Angiopoietina/biossíntese , Cardiomiopatias/terapia , Doxorrubicina , Terapia Genética/métodos , Fígado/metabolismo , Miócitos Cardíacos/metabolismo , Hormônios Peptídicos/biossíntese , Células-Tronco/metabolismo , Proteína 8 Semelhante a Angiopoietina , Proteínas Semelhantes a Angiopoietina/sangue , Proteínas Semelhantes a Angiopoietina/genética , Animais , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Cardiotoxicidade , Linhagem Celular , Movimento Celular , Proliferação de Células , Modelos Animais de Doenças , Técnicas de Transferência de Genes , Humanos , Proteínas com Homeodomínio LIM/metabolismo , Masculino , Microbolhas , Contração Miocárdica , Miócitos Cardíacos/patologia , Hormônios Peptídicos/sangue , Hormônios Peptídicos/genética , Ratos Sprague-Dawley , Receptores Imunológicos/metabolismo , Recuperação de Função Fisiológica , Regeneração , Nicho de Células-Tronco , Células-Tronco/patologia , Fatores de Tempo , Fatores de Transcrição/metabolismo , Ultrassom , Função Ventricular Esquerda , Remodelação Ventricular
18.
J Inherit Metab Dis ; 39(3): 447-455, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26960552

RESUMO

Fabry disease is caused by deficient activity of α-galactosidase A and subsequent intracellular accumulation of glycosphingolipids, mainly globotriaosylceramide (Gb3). Vascular endothelial cells may play important roles in disease pathogenesis, and are one of the main target cell types in therapeutic interventions. In this study, we generated immortalized aortic endothelial cell lines from a mouse model of Fabry disease. These cells retained endothelial cell-specific markers and functions. Gb3 expression level in one of these clones (referred to as FMEC2) was highly susceptible to culture media, and appeared to be regulated by glucosylceramide synthase. Results also showed that Gb3 could be upregulated by hydrocortisone. FMEC2 express the mannose 6-phosphate receptor and sortilin but not the mannose receptor. Uptake studies suggested that sortilin plays a role in the binding and internalization of mammalian cell-produced α-galactosidase A. Moss-aGal (a plant-made enzyme) was endocytosed by FMEC2 via a receptor other than the aforementioned receptors. In conclusion, this study suggests that glucosylceramide synthase and hydrocortisone may play important roles in modulating Gb3 levels in Fabry mouse aortic endothelial cells, and that endocytosis of recombinant α-galactosidase A involves a combination of multiple receptors depending on the properties of the enzyme.


Assuntos
Aorta/metabolismo , Células Endoteliais/enzimologia , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Doença de Fabry/enzimologia , Doença de Fabry/metabolismo , Triexosilceramidas/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Biomarcadores/metabolismo , Linhagem Celular , Modelos Animais de Doenças , Endocitose/fisiologia , Endotélio Vascular/enzimologia , Glucosiltransferases/metabolismo , Glicoesfingolipídeos/metabolismo , Lectinas Tipo C/metabolismo , Masculino , Receptor de Manose , Lectinas de Ligação a Manose/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Receptor IGF Tipo 2/metabolismo , Receptores de Superfície Celular/metabolismo , alfa-Galactosidase/metabolismo
19.
J Inherit Metab Dis ; 39(2): 293-303, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26310963

RESUMO

Enzyme replacement therapy (ERT) is an effective treatment for several lysosomal storage disorders (LSDs). Intravenously infused enzymes are taken up by tissues through either the mannose 6-phosphate receptor (M6PR) or the mannose receptor (MR). It is generally believed that M6PR-mediated endocytosis is a key mechanism for ERT in treating LSDs that affect the non-macrophage cells of visceral organs. However, the therapeutic efficacy of MR-mediated delivery of mannose-terminated enzymes in these diseases has not been fully evaluated. We tested the effectiveness of a non-phosphorylated α-galactosidase A produced from moss (referred to as moss-aGal) in vitro and in a mouse model of Fabry disease. Endocytosis of moss-aGal was MR-dependent. Compared to agalsidase alfa, a phosphorylated form of α-galactosidase A, moss-aGal was more preferentially targeted to the kidney. Cellular localization of moss-aGal and agalsidase alfa in the heart and kidney was essentially identical. A single injection of moss-aGal led to clearance of accumulated substrate in the heart and kidney to an extent comparable to that achieved by agalsidase alfa. This study suggested that mannose-terminated enzymes may be sufficiently effective for some LSDs in which non-macrophage cells are affected, and that M6P residues may not always be a prerequisite for ERT as previously considered.


Assuntos
Doença de Fabry/enzimologia , Doença de Fabry/metabolismo , Lectinas Tipo C/metabolismo , Lectinas de Ligação a Manose/metabolismo , Manosefosfatos/metabolismo , Receptores de Superfície Celular/metabolismo , alfa-Galactosidase/metabolismo , Animais , Linhagem Celular , Modelos Animais de Doenças , Terapia de Reposição de Enzimas/métodos , Feminino , Humanos , Isoenzimas/metabolismo , Rim/metabolismo , Doenças por Armazenamento dos Lisossomos/enzimologia , Doenças por Armazenamento dos Lisossomos/metabolismo , Masculino , Receptor de Manose , Camundongos , Camundongos Endogâmicos C57BL , Receptor IGF Tipo 2/metabolismo , Proteínas Recombinantes
20.
Diabetologia ; 58(5): 1036-44, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25720603

RESUMO

AIMS/HYPOTHESIS: ANGPTL8 is a circulatory hormone secreted from liver and adipose tissue that promotes pancreatic beta cell proliferation and interferes with triacylglycerol metabolism in mice. The clinical significance of its effects on inducing beta cell proliferation is limited because it causes severe hypertriacylglycerolaemia. METHODS: We employed ultrasound-targeted microbubble destruction (UTMD) to deliver human ANGPTL8 gene plasmids to the pancreas, liver and skeletal muscle of normal adult rats. RESULTS: Human ANGPTL8 was consistently detected in the circulation 1 month after UTMD. ANGPTL8 gene delivery promoted the proliferation of adult and aged beta cells, expanded the beta cell mass, improved glucose tolerance and increased the fasting blood insulin level after UTMD treatment without causing severe hypertriacylglycerolaemia. ANGPTL8 gene therapy significantly alleviated but did not totally reverse STZ-induced diabetes in a rat model. CONCLUSIONS/INTERPRETATION: ANGPTL8 induced adult and aged beta cell regeneration in a rat model.


Assuntos
Angiopoietinas/genética , Glicemia/metabolismo , Diabetes Mellitus Experimental/terapia , Técnicas de Transferência de Genes , Células Secretoras de Insulina/metabolismo , Regeneração/genética , Animais , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Terapia Genética , Insulina/sangue , Microbolhas , Pâncreas/metabolismo , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...